Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Low efficiency in recovering low-grade heat remains unresolved despite decades of attempts. In this research, we designed and fabricated a novel thermo-osmotic ionogel (TOI) composite to recover low-grade heat to generate electric power through a thermo-induced ion gradient and selective ion diffusion. The TOI composite was assembled with a crystalline ionogel (polymer-confined LiNO 3 –3H 2 O) film, ion selective membrane, and hydrogel film. With a 90 °C heat supply, the single TOI composite produced a high open-circuit voltage of 0.52 V, a differential thermal voltage of ∼26 mV K −1 , a peak power density of 0.4 W m −2 , and a ground-breaking peak energy conversion efficiency of 11.17%. Eight pieces of such a TOI composite were connected in series, demonstrating an open-circuit voltage of 3.25 volts. Such a TOI system was also demonstrated to harvest body temperature for powering a LED, opening numerous opportunities in powering wearable devices.more » « less
-
3D printing technology is able to produce personalized artificial substitutes for patients with damaged menisci. However, there is a lack of thorough understanding of 3D printing-enabled (3DP-enabled) meniscus transplantation and its long-term advantages over traditional transplantation. To help health care stakeholders and patients assess the value of 3DP-enabled meniscus transplantation, this study compares the long-term cost and risk of this new paradigm with traditional transplantation by simulation. Pathway models are developed to simulate patients’ treatment process during a 20-year period, and a Markov process is used to model the state transitions of patients after transplantation. A sensitivity analysis is also conducted to show the effect of quality of 3D-printed meniscus on model outputs. The simulation results suggest that the performance of 3DP-enabled meniscus transplantation depends on quality of 3D-printed meniscus. The conclusion of this study is that 3DP-enabled meniscus transplantation has many advantages over traditional meniscus transplantation, including a minimal waiting time, perfect size and shape match, and potentially lower cost and risk in the long term.more » « less
An official website of the United States government
